[Translation] 14 типов атак, которые должны выявлять системы лицевой биометрии

Image processing
Big Data
Machine learning
Artificial Intelligence
mashinnoe obuchenie
Presentation Attacks
iBeta
Replay Attack
Print Attack
Print Mask Attack
3D Render Attack
Latex Mask Attack
Silicone Mask Attack
Image processing
Big Data
Machine learning
Artificial Intelligence
машинное обучение
Presentation Attacks
iBeta
Replay Attack
Print Attack
Print Mask Attack
3D Render Attack
Latex Mask Attack
Silicone Mask Attack
Image 81Be59

Системы лицевой биометрии начинают активно использоваться во множестве ситуаций: при цифровой регистрации покупателей, аутентификации доступа к веб-сервисам, разблокировке сотовых телефонов, проходе в офис или на спортивные мероприятия, и так далее.

Такое распространение технологии неизбежно сопровождается новыми способами обмана с целью получения мошеннического доступа. Только в одних Соединённых Штатах, по оценкам Федеральной торговой комиссии (FTC), в 2021 году потери из-за мошенничества с личными данными составили приблизительно 2331,2 миллиона долларов, что вдвое больше, чем в 2019 году. Согласно данным FTC, мошенничество с личными данными составляет больше 50% от общего зафиксированного числа мошеннических действий.

Нельзя сказать, что мошенничество — это что-то новое; любой процесс, связанный с идентификацией личности, как с участием биометрии, так и без неё, становится целью злоумышленников, стремящихся получить доступ к не принадлежащим им правам пользования.

И с биометрией ситуация ничем не отличается, различия заключаются лишь в способе организации мошенничества. В этом посте мы ответим на некоторые вопросы о мошеннических действиях в системе лицевой биометрии и о технологиях, способных защитить от них.
Читать дальше →
Show backup